

Laser-based fabrication of affordable paper-based point-ofcare clinical diagnostics test

<u>Collin Sones</u>, Peijun He, Ioannis Katis and Rob Eason

Optoelectronics Research Centre, University of Southampton, UK

Motivation....

Southampton

- Enable detection of early stage bacterial infection
 - Home-testing for infections low cost, patient-friendly testing, rapid if possible, deliverable, readable using mobile-phones
 - As they wait to be seen by their GP or clinician post an operative surgery
- Reduce the burden of the testing
 - Free up the 'Clinician/GP time'
- Prevent anti-microbial resistance

Paper-based fluidics

Such microfluidic lab-on-chip type devices consist of

Southam

Southamp

<u>Requirements</u> –

- Pattern paper to form the fluidic patterns
- Deposit biological materials for implementing the assay/test

LDW patterning approach

Southampton

Technique that allows creation of μ -fluidic devices in porous materials

- 1. A local-deposition assisted laser-direct write procedure
- 2. Relies on the concept of light-induced polymerisation

Cellulose, Nitrocellulose membranes, glass-fibre filters, and fabrics

Introduction to Lateral-flow DevicesSouthamptoLateral Flow Devices (LFDs) or Dip-SticksSouthampto

- Simple devices intended to detect the presence (or absence) of a target analyte in sample (matrix) without the need for specialized and costly equipment.
- A widely spread and well known application is the home pregnancy test.

Introduction to Lateral-flow Devices

Southampton

Lateral Flow Devices (LFDs) or Dip-Sticks

Their advantages -

- ✓ Used at point-of-care
- ✓ Provide rapid results (~few min.)
- ✓ Are easy-to-use
- ✓ Are affordable (~ few £s)

Their disadvantages -

- X Detect a single condition or disease only
- X Give a yes/no answer only
- X Have low sensitivities

Hence have minimal clinical use

Our solutions to Lateral-flow Devices

- Multiplexed detection
 - Partition the flow path of a lateral flow test into multiple parallel channels that allow detection of multiple diseases.

 In collaboration with the UHS and the Federal University of Minas
Gerais, Brazil, we have developed a multiplexed LFD for diagnosis of
Visceral Leishmaniasis

Southampto

- In collaboration with the UHS, we are developing a multiplexed LFD for diagnosis of Tuberculosis
- In collaboration with the UHS, we are developing developed a multiplexed LFD for Dementia

Multiplexed detection on LFDs

Southampton

Our solution – multiplexing in multiple isolated flow-paths

Results for detection of CRP and SAA1 using LFDs with multiple flow paths. Advantages:

- No interference of multiple test sites positioned in the same flow path
- No need for increased device dimension
- No need for addition sample volume

Our solutions to Lateral-flow Devices

Southampton

- Increased sensitivity
 - Shape the flow path of a lateral flow test to have a custom-designed constriction that produces a enhanced high sensitivity.

Improved sensitivity and limit-ofdetection on LFDs

Southampton

Example- sensitivity and limit-of-detection increase for a CRP assay

Our solutions to Lateral-flow Devices

Southampton

- Quantitative testing
 - Partition the lateral flow test strip into multiple channels, each of which is pre-loaded with a set number of test lines. A quantitative result will be given by the number of lines that appears.

Our Solution to AMR

Southampton

- Current approach
 - Agar-plate based bacterial culture in pathological labs
 - Results visualized by highly trained experts

• Our solution

Create the laser-patterned devices – in the desired porous substrate

- A. Impregnate the pre-structured paper with chromogenic agar/nutrients
 - 1. Different 'Defined Media' in individual wells to allow 'Permissive Growth
 - 2. Inoculate, incubate and then study the growth of the bacteria
- B. Impregnate the pre-structured paper with nutrients and/or agar and add different antibiotics to each test zone

Integrated paper device -

Southampton

for Antimicrobial resistance testing

Three-layer foldable paper device ③ enables bacteria culture and further antimicrobial resistance testing

) Antibiotics array

Array of individual test zones for susceptibility test

Sample pad with an inlet point extend out of the device

Bottom layer contains growth medium for bacteria culturing.

Integrated paper device - Southampton for Antimicrobial resistance testing

Bottom

Тор

in each well

35

25µl

E.coli

5	15
25	35µl

Normalization of paper device Southampton to conventional disk diffusion test

Disc on Agar

Disc on paper device

Paper disc on Agar

Paper disc on paper device

Ciprofloxacin	Avg. Dia. (mm) n=5
Disc on Agar plate	28.3
Disc on paper device	25.3
Paper square on Agar plate	28.8
Paper square on Agar-impregnated paper	25.4

* Zone diameter breakpoint (mm): S>26 R<24

Conclusion:

- Our current strain is sensitive to ciprofloxacin
- Antibiotic susceptibility testing on paper-based devices produce results similar to conventional agar plate testing

Normalization of paper device Southampton to conventional disk diffusion test

Disc on Agar

Disc on paper device

Paper disc on Agar

Paper disc on paper device

Gentamicin	Avg. Dia. (mm) n=5
Disc on Agar plate	11.3
Disc on paper device	11.7
Paper square on Agar plate	11
Paper square on Agar-impregnated paper	11

* Zone diameter breakpoint (mm): S>17 R<14

Conclusion:

- Our current strain is resistant to Gentamicin
- Antibiotic susceptibility testing on paper-based devices produce results similar to conventional agar plate testing

Final goal – in future

Southampton

• Bacterial culture for antimicrobial resistance and lateralflow test for bacteria detection on the same device

Thank you!

Southampton

Bill Keevil and Catherine Bryant, Jessica Teeling

Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton

Bhaskar Somani

Department of Urology, University Hospital Southampton NHS Trust

Nitin Mahobia

Department of Infection, University Hospital Southampton NHS Trust

Paul Elkington, Clive Holmes, Andrew Walls, Tristan Clark,

Myron Christodoulides and María Victoria Humbert,

Faculty of Medicine, University of Southampton

Grants Nos. EP/J008052/1, EP/K023454/1, EP/N004388/1 and EP/M027260/1

University of Southampton

NAMRIP Pump Priming Award Fellowship - Institute for Life Sciences and the Faculty of Medicine

Project partners

With Health England

So far

Southampton

- Successfully infused the pre-structured paper with nutrient impregnated agar and allows for E.coli bacteria growth
- Identified the best chromogenic agar for E.coli growth and identification on paper devices
- Successfully preformed antimicrobial resistant tests for E.coli with 4 commonly used antibiotics on paper devices
- Demonstration of an early-stage integrated device for E.coli culture and antimicrobial resistant tests
- Comparing and normalization of antimicrobial resistance testing on paper devices with conventional disk diffusion test

Next step

Southampton

- Design and performance optimisations of the early-stage device for E.coli culture and antimicrobial resistant tests
- Testing of clinical samples
- Further validation of our paper-based device with other bacteria, i.e. Pseudomonas.
- Building of lateral-flow tests for bacteria detection on the same device

Final goal

• Bacterial culture for antimicrobial resistance and lateralflow test for bacteria detection on the same device

Bacteria culture on paper device Southampton

Comparison of E.coli growth: petri dish vs. paper-device

CFU count x Volume of bacterial solution (10 μ L) x Dilution factor (10⁻⁶)

 Average count (n=3) for agar plate: 27; for paper device: 27 CFU=2.7x10⁹ CFU/mL

Conclusion:

Our paper-based devices perform identically with conventional agar plate

Antimicrobial resistance testing

- Target pathogens E.coli
- 3x3 array test zones (antibiotics):

Paper device with antibiotic array

Southampto

inoculated bacteria on surface

1X1 cm square wells

Four different antibiotics have been tested at different doses

- Amoxicillin
- Nitrofurantoin

- Ciprofloxacin
- Gentamicin

Antimicrobial resistance testing

Southampton

Тор

Bottom

E.coli

5	15
25	35µl

Volume of antibiotic in each well

15	5
35	25µl

Bacteria culture on paper device Southampton

Study the growth of the bacteria

• Identify the best substrate and chromogenic agar for E.coli culturing

Cellulose filter

Nitrocellulose membrane

Chromogenic used

- E.coli ChromoSelect Agar B
- CHROMagar E.coli

Substrate used

- Cellulose filter
- Nitrocellulose membrane

Multiplexed detection on LFDs

Southampton

Current method – multiplexing in a single flow path

Results for multiplexed detection of CRP and SAA1 in a single LFD with multiple detection sites in the same flow path.

Drawbacks: undesired interference between different detection, namely, the influence of each test-lines on subsequent lines positioned further along the flow-path.

Multiplexed detection on LFDs

Southampton

• CRP • SAA1	Standard single LFDs
◆ SAA1	Single-channel LFDs with multiple test lines (CRP before SAA1)
▲ CRP	Single-channel LFDs with multiple test lines (SAA1 before CRP)
× CRP × SAA1	LDW patterned dual-channel LFDs

The results show that the colour intensity of the test lines (for both CRP and SAA1) for our LDW patterned dual-channel LFDs are at the same level as that for

standard single LFDs

Multiplexed detection of Leishmaniasis Southampton

Testing for positive and negative samples: Visceral Leishmaniasis Healthy Controlline Test line

Samples used – Serum and Whole blood Healthy negative controls, Visceral Leishmaniasis, Chaga's disease, Leprosis, Tegumentary Leishmaniasis

Improved sensitivity and limit-ofdetection on LFDs

Southampton

Example- sensitivity and limit-of-detection increase for a CRP assay

A clear signal enhancement can be observed with the decrease of the constriction widths for each concentration.

- Improvement in the sensitivity of the assay by 62x;
- Improvement in the limit of detection by 32x.